Erste Rekonstruktion des Klimas des Holozäns

Breitenbach, Sebastian F. M.; Marwan, Norbert

Die Bleßberghöhle – ein Glücksfall für die Klimaforschung Buchabschnitt

In: Thüringer Höhlenverein, e. V. (Hrsg.): Nächster Halt: Bleßberghöhle, Suhl, 2022.

Abstract | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus-Peter; Marwan, Norbert

A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany Proceedings Article

In: Geophysical Research Abstracts, S. EGU2016-14213, 2016.

Abstract | Links | BibTeX

Die ersten Ergebnisse der geochemischen Analysen der drei Stalagmiten BB-1 bis BB-3 lassen bereits Aussagen über die klimatischen Veränderungen des Klimas der letzten 14.000 Jahre zu. Eine ausführliche Interpretation findet sich im Beitrag Klimazonenverschiebung in Mitteleuropa.

Erste Ergebnisse aus Analysen von BB-1 bis BB-3
Monitoring vorschau

Monitoring

Projektleitung

Beteiligte Partner

Inhalt

Für die quantitative Rekonstruktion vergangener Feuchtigkeitsregime werden detaillierte Messungen der Umweltbedingungen in der Höhle, im Boden und an der Oberfläche durchgeführt. Dieses Programm wird von der Northumbria Uni geleitet und bekommt Unterstützung von allen Seiten, besonders auch von den Höhlenforschern vor Ort. In der Höhle werden vor allem Wasserproben für die Analyse stabiler IsotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben. (δD und δ18O) gesammelt und eine Reihe von Parametern gemessen, wie z. B. Luft- und Wassertemperatur in der Höhle, Wasserdruck, pCO2 und Tropfraten. An der Oberfläche werden Lufttemperatur und Bodentemperaturen in verschiedenen Tiefen gemessen. Ausserdem wird in der Höhle Karbonat auf Uhrgläsern gesammelt, um Kalibrationsstudien zu unterstützen und die Wachstumsdynamik der Stalagmiten besser zu verstehen.

Massenspektrometer Northumbria University

Paläoklima im Holozän

Projektleitung

Beteiligte Partner

Inhalt

Die ersten drei Stalagmiten aus der Bleßberghöhle (BB-1, BB-2, BB-3) sind während der letzten etwa 10.000 Jahre, dem HolozänHolozän Der jüngste Abschnitt der geologischen Zeitgeschichte, etwa die letzten 11.700 Jahre., gewachsen. Anhand der Analyse stabiler IsotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben. und von Spurenelementen wird versucht, verschiedene Aspekte der damals herrschenden Umwelt- und Klimabedingungen zu rekonstruieren. Obwohl es bereits erste interessante publizierte Ergebnisse gibt, geht die Untersuchung dieser Proben weiter.

Ergebnisse

BB-8 (Vorschau)

Quantitative Rekonstruktion des Klimas in Mitteleuropa während des MIS 3

Logo DFG

DFG-Projekt: Quantitative Rekonstruktion des Klimas in Mitteleuropa während des MIS 3MIS 3 "MIS" ist die Abkürzung für "marine isotope stage", übersetzt also "Isotopenstadium mariner Sedimente". Da sich beim Wechsel von Warm- zu Kaltzeiten (und umgekehrt) die Isotopenverhältnisse in den Kalkschalen kleiner Einzeller (Foraminiferen) auf dem Meeresboden ändern, werden diese zur Datierung herangezogen und lassen sich zur Eingruppierung verschiedener Klimazustände in der Vergangenheit nutzen. "MIS 3" bedeutet dabei eine kurzzeitige Warmphase (beginnend vor 57 Tausend Jahren) während der letzten Eiszeit. basierend auf Multi-ProxyProxy Umwelt- und Klimainformationen aus der Vergangenheit sind nicht direkt verfügbar, weil niemand da war, der diese messen und aufzeichnen konnte. Daher ist  man darauf angewiesen, diese Informationen indirekt aus anderen Informationen abzuleiten, wie z. B. Baumringe, das Verhältnis von Sauerstoffisotopen, Spurenelementen, Mächtigkeit von Sedimentschichten usw. Diese Art von Daten nennt man Proxies, was aus dem englischen stammt und „Stellvertreter“ bedeutet. Daten präzise datierter Spaläotheme (Flowstones) aus der Bleßberg Höhle, Deutschland

Projektleitung

Beteiligte Partner

Inhalt

Verglichen mit unserer aktuellen Warmzeit, dem HolozänHolozän Der jüngste Abschnitt der geologischen Zeitgeschichte, etwa die letzten 11.700 Jahre., ist das letzte Glazial und besonders das Marine Isotopenstadium 3MIS 3 "MIS" ist die Abkürzung für "marine isotope stage", übersetzt also "Isotopenstadium mariner Sedimente". Da sich beim Wechsel von Warm- zu Kaltzeiten (und umgekehrt) die Isotopenverhältnisse in den Kalkschalen kleiner Einzeller (Foraminiferen) auf dem Meeresboden ändern, werden diese zur Datierung herangezogen und lassen sich zur Eingruppierung verschiedener Klimazustände in der Vergangenheit nutzen. "MIS 3" bedeutet dabei eine kurzzeitige Warmphase (beginnend vor 57 Tausend Jahren) während der letzten Eiszeit. (MIS 3, ca. 57 bis 27 kaka BP Mit "ka BP" sind "Tausend Jahre vor 1950" gemeint. Das "BP" steht für "before present", was in der Paläoklima-Wissenschaft als 1950 festgelegt wurde. "11.000 ka BP" bedeuted also 11 Tausend Jahre vor 1950, oder unter Verwendung unseres gewohnten Kalenders: 9050 v. Chr.) durch starke Klimaoszillationen geprägt. Dies wird beispielsweise durch Daten von Sauerstoffisotopenδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an.18O) Daten grönländischer Eisbohrkerne oder auch europäischen Klimaarchiven wie Pollen- oder Baumring-Datensätzen belegt. Leider gibt es jedoch wenige direkte ProxyProxy Umwelt- und Klimainformationen aus der Vergangenheit sind nicht direkt verfügbar, weil niemand da war, der diese messen und aufzeichnen konnte. Daher ist  man darauf angewiesen, diese Informationen indirekt aus anderen Informationen abzuleiten, wie z. B. Baumringe, das Verhältnis von Sauerstoffisotopen, Spurenelementen, Mächtigkeit von Sedimentschichten usw. Diese Art von Daten nennt man Proxies, was aus dem englischen stammt und „Stellvertreter“ bedeutet.-basierte Nachweise aus der Region Zentraleuropas, weshalb die Klima- und Umweltbedingungen während des MIS 3 noch immer größtenteils unbekannt sind. Zentraleuropäische SpeläothemeSpeläothem Sekundäre Mineralablagerungen in Höhlen, wie Sinter, Stalagmiten, Stalaktiten, usw. mit Wachstumsphasen während des MIS 3 sind durch vermutlich kalte Klimabedingungen limitiert und treten primär in wärmeren südlicheren, sowie alpinen Regionen, in denen das Wachstum durch Schmelzwässer ermöglicht wurde, auf.

Die DatierungDatierung Um einem Stalagmiten oder gar einer einzelnen Wachstumslage im Stalagmiten ein Alter zuordnen zu können, muß eine Datierung durchgeführt werden. Dies erfolgt in der Regel radiometrisch, d. h. über die Messung von Zerfallsprodukten (siehe auch U/Th-Datierung). mehrere Proben aus der Bleßberg-Höhle (Deutschland) mit Hilfe der 230Th/U-MethodeU/Th-Datierung Die U/Th-Datierung ist eine sehr präzise radiometrische Altersbestimmung auf Basis der Uran-Thorium-Zerfallsreihe. Das Uran zerfällt mit bekannten Halbwertszeiten (245.500 Jahre) zum Tochterelement Thorium. Stalagmiten bauen bei ihrem Wachstum (fast) nur das wasserlösliche Uran ein, während das schlecht bewegliche Thorium zum größten Teil im Boden und Epikarst über der Höhle verbleibt. Das kann man nutzen, um die Zeit zu berechnen, die seit der Ausfällung der untersuchten Karbonatprobe vergangen ist. Moderne massenspektrometrische Verfahren erlauben Altersbestimmungen mit der U/Th-Methode bis zu 700.000 Jahren vor Heute. präsentierte allerdings zwei Flowstones, welche während des MIS 3 und des Spätglazials gewachsen sind. Diese beiden Flowstones repräsentieren damit den nördlichsten (kontinentalen) Wachstum von Speläothemen in Mitteleuropa.

Das Hauptziel dieses Projekts ist die Erstellung eines präzise datierten Multi-Proxy Datensatzes für das MIS 3, sowie das Spätglazial, basierend auf den zwei Flowstones aus der Bleßberg Höhle. Dies gibt uns die einzigartige Möglichkeit in ausgewählten Phasen des letzten Glazials präzise datierte Informationen zur Variabilität des terrestrischen Klimas zu erhalten, die derzeit für Mitteleuropa basierend auf Speläothemen nicht verfügbar sind. Mit der Kombination verschiedener Proxys wie stabile IsotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben. oder SpurenelementeSpurenelement Ein Spurenelement ist ein chemisches Element genannt, das nur in geringer Konzentration in einer Probe vorhanden ist. Tropfsteine bestehen fast ausschließlich aus Kalziumkarbonat, also aus den Elementen Kalzium, Kohlenstoff und Sauerstoff. Andere Elemente kommen nur in sehr geringen Konzentrationen vor, sind aber vorhanden. Deren Konzentration hängt oft von den während der Entstehung des Tropfsteins herrschenden Umweltbedingungen ab., der Ergebnisse eines Höhlenmonitoring-Programms, der Analayse von δD und δ18O Daten von fluid inclusions und einer isotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben.-enabled Klimamodellierung, bekommen wir die Möglichkeit detaillierte Einblicke in die Umweltbedingungen Zentraleuropas während des MIS 3 und des Spätglazials zu erhalten.

Logo GFZ

Geoforschungszentrum Potsdam (GFZ) – Arbeitsgruppe Stabile Isotope (Sedimente und Wasser)

Das Geoforschungszentrum Potsdam ist ein außeruniversitäres Forschungsinstitut, welches zur DynamikDynamik Die zeitliche Veränderung von Zuständen, wie z. B. die zyklische Änderung des Klimas zwischen Warm und Kaltzeiten. der festen Erde forscht. Es wurde 1992 gegründet und ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

An der Forschung in der Bleßberghöhle beteiligt sich das GFZ durch geochemischeGeochemie Untersuchung kleinster chemischer Unterschiede, meist anhand von Isotopenverhältnissen und Elementverteilungen, um Aussagen zu den Klima- und Umweltbedingungen während der erdgeschichtlichen Entstehung der Probe zu erhalten. Analysen von Tropfwasser und Stalagmiten.

Ansprechpartner

Dr. Birgit Schröder

Webseite

https://www.gfz-potsdam.de/

Publikationen

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (Summer School on Speleothem Sciences 2023, Sao Paulo).

Abstract | Links | BibTeX

Klose, J.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.; Scholz, D.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2022, (KR9 Konferenz in Innsbruck).

Abstract | Links | BibTeX

Klose, Jennifer; Scholz, Denis; Breitenbach, Sebastian F. M.; Plessen, Birgit; Vonhof, Hubert

Determination of phases of warm climate during MIS 3 in Central Europe based on precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2021, (GeoKarlsruhe 2021: Sustainable Earth – From processes to resources, Karlsruhe).

Abstract | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Waltgenbach, Sarah; Tjallingii, Rik; Leonhardt, Jens; Jochum, Klaus-Peter; Meyer, Hanno; Goswami, Bedartha; Marwan, Norbert; Scholz, Denis

Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany Artikel

In: Global and Planetary Change, Bd. 176, S. 144–161, 2019.

Abstract | Links | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Waltgenbach, Sarah; Tjallingii, Rik; Leonhardt, Jens; Jochum, Klaus-Peter; Meyer, Hanno; Marwan, Norbert; Scholz, Denis

Tracing past shifts of the boundary between maritime and continental climate over Central Europe Proceedings Article

In: Geophysical Research Abstracts, S. EGU2018-9046, 2018.

Abstract | Links | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus-Peter; Marwan, Norbert

A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany Proceedings Article

In: Geophysical Research Abstracts, S. EGU2016-14213, 2016.

Abstract | Links | BibTeX

Wenz, Sarah; Scholz, Denis; Spötl, Christoph; Plessen, Birgit; Mischel, Simon; Breitenbach, Sebastian F. M.; Jochum, Klaus-Peter; Fohlmeister, Jens

Timing and duration of climate variability during the 8.2 ka event reconstructed from four speleothems from Germany Proceedings Article

In: Geophysical Research Abstracts, S. EGU2016-12731, 2016.

Abstract | Links | BibTeX

Marwan, Norbert; Breitenbach, Sebastian F. M.; Plessen, Birgit; Scholz, Denis; Leonhardt, Jens

Recurrence properties as signatures for abrupt climate change Proceedings Article

In: Geophysical Research Abstracts, S. EGU2014-8893, 2014.

Abstract | Links | BibTeX

Abrupte Änderungen im Klima

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (Summer School on Speleothem Sciences 2023, Sao Paulo).

Abstract | Links | BibTeX

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing and progression of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (XXI INQUA Conference, Rome (Italy)).

Abstract | BibTeX

Klose, J.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.; Scholz, D.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2022, (KR9 Konferenz in Innsbruck).

Abstract | Links | BibTeX

Marwan, Norbert

Bleßberghöhle – Schatzkammer für die Wissenschaft Vortrag

15.06.2022, (VdHK-Symposium: Wissenschaft unter Tage – Höhlenforschung im Dialog, Truckenthal (Germany)).

BibTeX

Breitenbach, Sebastian F. M.; Marwan, Norbert

Die Bleßberghöhle – ein Glücksfall für die Klimaforschung Buchabschnitt

In: Thüringer Höhlenverein, e. V. (Hrsg.): Nächster Halt: Bleßberghöhle, Suhl, 2022.

Abstract | BibTeX

Marwan, Norbert; Breitenbach, Sebastian F. M.; Plessen, Birgit; Scholz, Denis; Leonhardt, Jens

Recurrence properties as signatures for abrupt climate change Proceedings Article

In: Geophysical Research Abstracts, S. EGU2014-8893, 2014.

Abstract | Links | BibTeX

Am PIK werden u. a. neue Methoden entwickelt, die einerseits neue Aspekte in Paläoklimadaten untersuchen, die aber auch mit den Schwierigkeiten klarkommen, die für gewöhnlich mit Paläoklimaanalysen zusammenhängen – wie z. B. Lücken in den DatenLücken in den Daten Stalagmiten wachsen nicht gleichmäßig. Es kann sogar zu langen Ruhephasen kommen, in denen gar kein Wachstum stattfindet. Somit werden zu diesen Zeiten die entsprechenden Umweltinformationen nicht im Stalagmit abgespeichert. Es entstehen also "Lücken" in den Daten., Unsicherheiten der AlterUnsicherheiten der Alter Um die abgespeicherten Umweltinformationen aus den Stalagmiten bestimmten Zeiträumen zuordnen zu können, muß man diese datieren. Allerdings sind alle Datierungsverfahren mit Unsicherheiten behaftet. Das heißt, man kann den Zeitpunkt von bestimmten Umweltveränderungen, die man aus den Stalagmiten herauslesen kann, nie ganz genau bestimmen, sondern nur so ungefähr. Viele statistische Verfahren benötigen allerdings genaue Zeitpunkte und können daher mit solchen Daten nicht umgehen. oder Unregelmäßigkeiten der DatenpunkteUnregelmäßigkeiten der Datenpunkte Stalagmiten wachsen nicht gleichmäßig. Daher kann man die im Stalagmiten gemessenen Umweltveränderungen nicht gleichmäßig bestimmten Zeitpunkten (z. B. jährliche Zeitpunkte) zuordnen. Das erschwert in der Regel statistische Auswertungen, da die Auswertemethoden meist von gleichmäßig verteilten Zeitpunkten ausgehen.. Dabei handelt es sich zwar um Grundlagenforschung, aber diese wird auch sofort auf interessante Fragestellungen angewendet.

Ein Schwerpunkt ist die Entwicklung und Anwendung von Methoden, die speziell die wiederkehrenden Muster untersuchen (im englischen: „recurrence“). Diese Methoden sind sehr erfolgreich für das Auffinden von abrupten Änderungen, aber auch für das Vergleichen verschiedener Datensätze, um z. B. herauszufinden, ob es da gegenseitige Einflüsse gibt.

In einer unserer ersten Analysen von den drei Stalagmiten BB-1 bis BB-3, hatten wir uns die Sauerstoffisotopeδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an. von BB-1 mit diesen Wiederkehr-Methoden angeschaut. Dabei hatten wir extra auch die DatierungsunsicherheitUnsicherheiten der Alter Um die abgespeicherten Umweltinformationen aus den Stalagmiten bestimmten Zeiträumen zuordnen zu können, muß man diese datieren. Allerdings sind alle Datierungsverfahren mit Unsicherheiten behaftet. Das heißt, man kann den Zeitpunkt von bestimmten Umweltveränderungen, die man aus den Stalagmiten herauslesen kann, nie ganz genau bestimmen, sondern nur so ungefähr. Viele statistische Verfahren benötigen allerdings genaue Zeitpunkte und können daher mit solchen Daten nicht umgehen. mit berücksichtigt. Durch die Datierungsunsicherheiten gibt es kleine Verschiebungen der Zeitreihe entlang der x-Achse. Innerhalb der Unsicherheiten sind daher verschiedene Realisierungen des Verlaufs der gemessenen Sauerstoffisotope möglich.

Sauerstoffisotope von BB-1
Sauerstoffisotope von BB-1. Durch die Datierungsunsicherheiten gibt es verschiedene Möglichkeiten, zu welcher Zeit es Änderungen in diesem Klima-Archiv gab. Der Stalagmit ist in der Zeit von vor etwa 6.000 bis vor etwa 400 Jahren gewachsen.

Die Wiederkehrmuster werden mit einem speziellen Analysewerkzeug untersucht, dem sogenannten „recurrence plot“. Damit lassen sich Zeiten darstellen, zu denen ähnliche Zustände aufgetreten sind. Die Muster, die man in so einem „recurrence plot“ sieht, haben eine tiefere Bedeutung und können weiter analysiert und quantifiziert werden, um Änderungen in der DynamikDynamik Die zeitliche Veränderung von Zuständen, wie z. B. die zyklische Änderung des Klimas zwischen Warm und Kaltzeiten. des zugrundeliegenden Prozesses zu finden.

Recurrence plot der Sauerstoffisotope von BB-1
Recurrence plot einer Realisierung der gemessenen Sauerstoff-Isotopeδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an. in BB-1.

Die numerische Analyse von „recurrence plots“ liefert verschiedene Ergebnisse, die verschiedene Aspekte der Klimadynamik beleuchten. Zwei solcher Ergebnisse sind hier kurz dargestellt: einerseits die KomplexitätKomplexe Systeme Komplexe Systeme bestehen aus sehr vielen Komponenten, die auch miteinander wechselwirken, zeigen unvorhersagbares Verhalten und können trotzdem charakteristische Muster hervorrufen (weshalb sie sich deutlich von rein zufälligen Systemen unterscheiden). der Klimavariabilität („TransitivityTransitivity Ein Maß aus der Netzwerktheorie, welches quantifiziert, wie stark sich Zustände zu kleinen Gruppen zusammenfinden.“) und andererseits, wie gut so ein Klimasignal vorhersagbar wäre („DeterminismDeterminism Ein Maß aus der Wiederkehr-Analyse, welches beschreibt, wie gut sich die Veränderung eines Systems vorhersagen läßt.“). Beide Ergebnisse zeigen eine generelle Tendenz zu größerer Komplexität und geringerer Vorhersagbarkeit für jüngere Alter. Sie zeigen aber auch für bestimmte Zeitpunkte kurzzeitige Anstiege zu besserer Vorhersagbarkeit, nämlich ungefähr vor 4.200, 2.800 und 1.400 Jahren. Genau zu diesen Zeitpunkten kam es zu kurzzeitigen und schnellen Vereisungen im Nordatlantik, den sogenannten „Bond-EreignissenBond-Ereignis Kurze Zeiträume im Holozän, in denen kühleres Oberflächenwasser und Treibeis aus dem Arktischen Ozean bis tief in wärmere subpolare Gewässer getrieben wurde.“. Gleichzeitig gibt es Variationen in der Komplexität des Klimasignals („Transitivity“), allerdings bewegen sich diese Variationen innerhalb eines Unsicherheitsbereiches (KonfidenzintervallKonfidenzintervall Im Rahmen der Statistik ein Bereich, in dem man den gemessenen Veränderungen nicht wirklich vertrauen kann.), so daß wir diese nicht wirklich interpretieren dürfen.

Recurrence quantification der Sauerstoffisotope von BB-1
Quantitative Analyse von Wiederkehrmustern in den Sauerstoffisotopenδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an.-Messungen von BB-1.

Klimazonenverschiebung in Mitteleuropa

Marwan, Norbert

Bleßberghöhle – Schatzkammer für die Wissenschaft Vortrag

15.06.2022, (VdHK-Symposium: Wissenschaft unter Tage – Höhlenforschung im Dialog, Truckenthal (Germany)).

BibTeX

Breitenbach, Sebastian F. M.; Marwan, Norbert

Die Bleßberghöhle – ein Glücksfall für die Klimaforschung Buchabschnitt

In: Thüringer Höhlenverein, e. V. (Hrsg.): Nächster Halt: Bleßberghöhle, Suhl, 2022.

Abstract | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Waltgenbach, Sarah; Tjallingii, Rik; Leonhardt, Jens; Jochum, Klaus-Peter; Meyer, Hanno; Goswami, Bedartha; Marwan, Norbert; Scholz, Denis

Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany Artikel

In: Global and Planetary Change, Bd. 176, S. 144–161, 2019.

Abstract | Links | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus-Peter; Marwan, Norbert

A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany Proceedings Article

In: Geophysical Research Abstracts, S. EGU2016-14213, 2016.

Abstract | Links | BibTeX

BB-1, BB-2 und BB-3.
BB-1, BB-2 und BB-3.

Die drei Stalagmiten BB-1 bis BB-3 wurden von GFZ Potsdam, Ruhr-Uni Bochum, PIK Potsdam, Uni Mainz und Northumbria University geochemischGeochemie Untersuchung kleinster chemischer Unterschiede, meist anhand von Isotopenverhältnissen und Elementverteilungen, um Aussagen zu den Klima- und Umweltbedingungen während der erdgeschichtlichen Entstehung der Probe zu erhalten. untersucht.

Die DatierungDatierung Um einem Stalagmiten oder gar einer einzelnen Wachstumslage im Stalagmiten ein Alter zuordnen zu können, muß eine Datierung durchgeführt werden. Dies erfolgt in der Regel radiometrisch, d. h. über die Messung von Zerfallsprodukten (siehe auch U/Th-Datierung). (U/ThU/Th-Datierung Die U/Th-Datierung ist eine sehr präzise radiometrische Altersbestimmung auf Basis der Uran-Thorium-Zerfallsreihe. Das Uran zerfällt mit bekannten Halbwertszeiten (245.500 Jahre) zum Tochterelement Thorium. Stalagmiten bauen bei ihrem Wachstum (fast) nur das wasserlösliche Uran ein, während das schlecht bewegliche Thorium zum größten Teil im Boden und Epikarst über der Höhle verbleibt. Das kann man nutzen, um die Zeit zu berechnen, die seit der Ausfällung der untersuchten Karbonatprobe vergangen ist. Moderne massenspektrometrische Verfahren erlauben Altersbestimmungen mit der U/Th-Methode bis zu 700.000 Jahren vor Heute.) wurde an der Uni Mainz vorgenommen. Stalagmit BB-1 ist vor 5.600 bis 600 Jahren, BB-2 vor 6.200 bis 3.700 und BB-3 (obwohl der kürzeste) vor 11.200 bis 5.300 Jahren gewachsen. Am GFZ wurden im BB-1 in über 1.000 Proben Kohlenstoff- und Sauerstoffisotopeδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an.13C und δ18O) gemessen, im BB-2 und BB-3 jeweils etwa 400 bzw. 540 Proben. Parallel dazu wurde die Verteilung verschiedener Elemente (u.a. Sr/Ca und S/Ca) röntgenanalytisch gemessen. Die Altersmodellierung und statistische Auswertungen erfolgten an Ruhr-Uni Bochum, PIK Potsdam und Northumbria University.

In den AltersmodellenAltersmodell Nach der Datierung eines Stalagmiten werden allen anderen Messungen (z. B. Isotopenverhältnisse), die ursprünglich entlang einer Längen-Achse durchgeführt wurden, ein Alter zugeordnet. der Stalagmiten BB-1 und BB-3 sind abrupte Wechsel von langsamen zu schnellem Wachstum bei etwa 5.900 v. Chr. und von schnellem zu einem eher langsamen Wachstum bei etwa 2.600 v. Chr. zu erkennen.

Altersmodell BB-1 und BB-3
Altersmodelle der Stalagmiten BB-1 und BB-3. Deutlich sind Änderungen der Wachstumsgeschwindigkeiten bei etwa 6.200 v. Chr. und zwischen 5.900 und 2.600 v. Chr. zu erkennen, wofür Klimaänderungen verantwortlich sind.

Die zeitlichen Änderungen der Isotopenverhältnisse wurden mit Paläoklimadaten aus der Bunkerhöhle in Nordrhein-Westfalen und aus Grönland verglichen.

Kohlenstoff- und Sauerstoffisotope von BB-1 und BB-3
Isotopenverhältnisse in Stalagmiten BB-1 und BB-3 (kombiniert). Die längerfristigen Trends spiegeln vermutlich eine Änderung des solaren Einflusses wider. Die kurzzeitige Klima-Abkühlung um 6.200 v. Chr. ist deutlich in den Isotopenverhältnissen zu erkennen. Der abrupte Abfall der δ18O-Werte um 900 bis 1.200 AD fällt mit der mittelalterlichen Warmperiode zusammen.

Dieser Vergleich erlaubt eine Abschätzung der räumlichen Verteilung des Einflusses des maritimen, feuchten und warmen Atlantik-Klimas in Mitteleuropa. Die Bleßberghöhle befindet sich an der Grenze zwischen dem Einfluss des Atlantik-Klimas und dem kontinentalen, trockeneren und kälteren Klima aus dem Osten. Aus dem Wechsel zwischen stärkerer Ähnlichkeit und größeren Unterschieden im regionalen Klima an der Bleßberghöhle und der Bunkerhöhle läßt sich festzustellen, wann die Klimazonengrenze östlich oder westlich von der Bleßberghöhle lag, wann also das atlantische, feuchtere und wärmere Klima und wann das kältere und trockenere Kontinentalklima über der Bleßberghöhle vorherrschte. Diese Analyse konnte bis etwa 4.000 Jahre zurück durchgeführt werden (also etwa 2050 v. Chr.). Vor dieser Zeit können aufgrund fehlender Daten aus Grönland bislang keine Aussagen bezüglich der Lage der Klimazonengrenze getroffen werden, aber vermutlich lag um diese Zeit die Bleßberghöhle wohl im Einflussbereich des atlantischen Klimas. Um 1850 v. Chr. wechselte es dann zum kontinentalen Klima (in der späten Aunjetitzer KulturAunjetitzer Kultur Eine archäologische Kultur der Frühbronzezeit (ca. 2300 v. Chr. bis 1600/1500 v. Chr.). Bekannt durch die "Himmelsscheibe von Nebra"., bekannt durch die Himmelsscheibe von Nebra). Zwischen 950 bis 850 v. Chr. wurde der atlantische Einfluss wieder dominanter (gegen Ende der UrnenfelderkulturUrnenfelderkultur Weit verbreitete mitteleuropäische Kultur der späten Bronzezeit (1300 v. Chr. bis 800 v. Chr). Charakteristisch sind die Beisetzung der Toten in Urnen, sowie typische Bronze- und Keramikformen.).

Karte der Verlagerung der Klimazonengrenze.
Verlagerung der Klimazonengrenze (gestrichelt) nach Osten mit hypothetischem Verlauf (gepunktet) zur Zeit der Urnenfelderkultur (BU – Bunkerhöhle, BBH – Bleßberghöhle).