Climate Zone Shift in central Europe

Breitenbach, Sebastian F. M.; Plessen, Birgit; Waltgenbach, Sarah; Tjallingii, Rik; Leonhardt, Jens; Jochum, Klaus-Peter; Meyer, Hanno; Goswami, Bedartha; Marwan, Norbert; Scholz, Denis

Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany Journal Article

Global and Planetary Change, 176 , pp. 144–161, 2019.

Abstract | Links | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus-Peter; Marwan, Norbert

A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany Inproceedings

Geophysical Research Abstracts, pp. EGU2016-14213, 2016.

Abstract | Links | BibTeX

BB-1, BB-2 and BB-3.
BB-1, BB-2 and BB-3.

The three stalagmites BB-1 to BB-3 were geochemically investigated by GFZ Potsdam, Ruhr-Uni Bochum, PIK Potsdam, Uni Mainz and Northumbria University.

The dating was done at the University of Mainz. Stalagmite BB-1 grew 5,600 to 600 years ago, BB-2 6,200 to 3,700 years ago, and BB-3 (although the shortest) 11,200 to 5,300 years ago. At GFZ, carbon and oxygen isotopes (δ13C and δ18O) were measured in over 1,000 samples in BB-1, and about 400 and 540 samples each in BB-2 and BB-3. In parallel, the distribution of various elements was measured by X-ray analysis. Age modelling and statistical analysis were carried out at Ruhr-Uni Bochum, PIK Potsdam and Northumbria University.

In the age models of stalagmites BB-1 and BB-3, abrupt changes from slow to fast growth are evident at about 5,900 BC and from fast to more slow growth at about 2,600 BC.

Age model of BB-1 and BB-3
Age models of stalagmites BB-1 and BB-3. Changes in growth rates at around 6,200 BC and between 5,900 and 2,600 BC can clearly be seen, for which climatic changes are responsible.

The temporal changes in isotope ratios were compared with palaeoclimate data from the Bunker Cave in North Rhine-Westphalia and from Greenland.

Carbon and oxygen istotopes of BB-1 and BB-3
Isotope ratios in stalagmites BB-1 and BB-3 (combined). The longer-term trends probably reflect a change in solar influence. The short-term climate cooling around 6,200 BC is clearly visible in the isotope ratios. The abrupt drop in δ18O values around 900 to 1,200 AD coincides with the Medieval Warm Period.

This comparison allows an estimation of the spatial distribution of the influence of the maritime, humid and warm Atlantic climate in Central Europe. The Blessberg cave is located at the border between the influence of the Atlantic climate and the continental, drier and colder climate from the east. From the alternation between stronger similarities and greater differences in the regional climate at the Blessberg Cave and the Bunker Cave it can be determined when the climate zone boundary was east or west of the Bleßberg Cave, i.e. when the Atlantic, wetter and warmer climate and when the colder and drier continental climate prevailed over the Bleßberg Cave. This analysis could be carried out back to about 4,000 years ago (i.e. about 2050 BC). Before this time, due to the lack of data from Greenland, it is not yet possible to make conclusions regarding the location of the climate zone boundary, but at least around this time the Bleßberg Cave was probably under the influence of the Atlantic climate. Around 1850 BC it then changed to a continental climate (in the late Aunjetitz culture, known from the Nebra sky disc). Between 950 and 850 BC, the Atlantic influence became more dominant again (towards the end of the Urnfield Culture).

Karte der Verlagerung der Klimazonengrenze.
Shift of the climate zone boundary (dashed) to the east with hypothetical course (dotted) at the time of the Urnfield Culture (BU – Bunker Cave, BBH – Blessberg Cave).