Thermolumineszenz-Datierung von Tropfsteinen

Zhang, Junjie; Klose, Jennifer; Scholz, Denis; Marwan, Norbert; Breitenbach, Sebastian F. M.; Katzschmann, Lutz; Kraemer, Dennis; Tsukamoto, Sumiko

Isothermal thermoluminescence dating of speleothem growth – A case study from Bleßberg cave 2, Artikel

In: Quaternary Geochronology, Bd. 85, S. 101628, 2024.

Abstract | Links | BibTeX

Zhang, J.; Klose, J.; Sierralta, M.; Tsukamoto, S.; Scholz, D.; Marwan, N.; Breitenbach, S.

Isothermal thermoluminescence (ITL) dating of a speleothem from Bleßberg Cave Vortrag

29.06.2023, (17th International Luminescence and Electron Spin Resonance Dating conference (LED2023), Copenhagen (Denmark)).

Abstract | BibTeX

Diese Studie untersucht die Methode der isothermalen Thermolumineszenz-DatierungThermolumineszenz-Datierung In manchen Mineralen (wie z. B. Kalzit) wird Energie in Form von Strahlenschäden (z. B. durch kosmische Strahlung) im Kristallgitter gespeichert. Durch Erhitzen kann diese gespeicherte Energie in Form von Licht freigesetzt und für die Datierung genutzt werden., um das Alter von Tropfsteinen zu bestimmen. Die herkömmlichen Methoden zur DatierungDatierung Um einem Stalagmiten oder gar einer einzelnen Wachstumslage im Stalagmiten ein Alter zuordnen zu können, muß eine Datierung durchgeführt werden. Dies erfolgt in der Regel radiometrisch, d. h. über die Messung von Zerfallsprodukten (siehe auch U/Th-Datierung). von Höhlenformationen, wie die U/Th-DatierungU/Th-Datierung Die U/Th-Datierung ist eine sehr präzise radiometrische Altersbestimmung auf Basis der Uran-Thorium-Zerfallsreihe. Das Uran zerfällt mit bekannten Halbwertszeiten (245.500 Jahre) zum Tochterelement Thorium. Stalagmiten bauen bei ihrem Wachstum (fast) nur das wasserlösliche Uran ein, während das schlecht bewegliche Thorium zum größten Teil im Boden und Epikarst über der Höhle verbleibt. Das kann man nutzen, um die Zeit zu berechnen, die seit der Ausfällung der untersuchten Karbonatprobe vergangen ist. Moderne massenspektrometrische Verfahren erlauben Altersbestimmungen mit der U/Th-Methode bis zu 700.000 Jahren vor Heute., sind bei sehr alten Proben schwierig. Am LIAG wurde nun anhand des Stalagmiten BB2-1 untersucht, wie man die Thermolumineszenz-Datierung anpassen kann, damit sie korrekte Alter liefert. Da die Lichteinwirkung auf den Stalagmiten die Datierungsergebnisse beeinflussen kann, wurde ein Teil des Materials mir einer spezielle Säure entfernt, um diesen Effekt zu minimieren. Es wurde auch getestet, wie Licht die Ergebnisse dennoch beeinflussen könnte. Die Alters-Ergebnisse wurden mit U/ThU/Th-Datierung Die U/Th-Datierung ist eine sehr präzise radiometrische Altersbestimmung auf Basis der Uran-Thorium-Zerfallsreihe. Das Uran zerfällt mit bekannten Halbwertszeiten (245.500 Jahre) zum Tochterelement Thorium. Stalagmiten bauen bei ihrem Wachstum (fast) nur das wasserlösliche Uran ein, während das schlecht bewegliche Thorium zum größten Teil im Boden und Epikarst über der Höhle verbleibt. Das kann man nutzen, um die Zeit zu berechnen, die seit der Ausfällung der untersuchten Karbonatprobe vergangen ist. Moderne massenspektrometrische Verfahren erlauben Altersbestimmungen mit der U/Th-Methode bis zu 700.000 Jahren vor Heute.-Altern, die an der Uni Mainz gemessen wurden, verglichen. Sie stimmen innerhalb der Fehlergenzen gut überein. Damit belegt die Studie, dass die Thermolumineszenz-Datierung zuverlässige Altersangaben für besonders alte Tropfsteine liefern kann.

Korrelation von Datierungspunkten
Vergleich der Datierungsergebnisse von BB2-1 mit U/Th- und TL-Datierung.

Stalagmiten-Wachstum während MIS 3

Klose, Jennifer

Quantitative multi-proxy climate reconstruction for MIS 3 in Central Europe based on precisely dated speleothems from Bleßberg Cave, Germany Promotionsarbeit

2024.

Abstract | Links | BibTeX

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (Summer School on Speleothem Sciences 2023, Sao Paulo).

Abstract | Links | BibTeX

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing and progression of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (XXI INQUA Conference, Rome (Italy)).

Abstract | BibTeX

Klose, J.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.; Scholz, D.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2022, (KR9 Konferenz in Innsbruck).

Abstract | Links | BibTeX

Klose, Jennifer; Scholz, Denis; Breitenbach, Sebastian F. M.; Plessen, Birgit; Vonhof, Hubert

Determination of phases of warm climate during MIS 3 in Central Europe based on precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2021, (GeoKarlsruhe 2021: Sustainable Earth – From processes to resources, Karlsruhe).

Abstract | BibTeX

Verschiedene Kurven
Wachstumsphasen der Bleßberg-Tropfsteine im Vergleich zu anderen Klimadaten. (a) Rekonstruktion des antarktischen Bodenwassers (AABW) basierend auf Pa/Th-Daten aus dem Bohrkern CDH19 von der Bermuda Rise (dunkel-türkise Linie). (b) Rekonstruktion des Meeresspiegels im Roten Meer (dunkelblaue Linie). (c) Rekonstruktion der Meereisbedeckung im Nordatlantik, basierend auf PbIP25 (ein Isoprenoid-Lipid) aus der südöstlichen Norwegischen See (hell-türkise Linie mit Dreiecken). (d) Sommerliche Oberflächentemperaturen (SST) basierend auf Alkenon-Messungen aus Bohrkern MD01-2444 am Iberischen Rand (37°N, schwarze Linie). (e, f) und (g): Rekonstruktionen der Vegetation, basierend auf Pollendaten von Süßgräsern (grün), Fichten (dunkelgrün) und Hainbuchen (gelb-grün) aus verschiedenen Eifel-Maar-Bohrkernen (AU3, AU4, HM4). (h) Eistrümmer-Ablagerungen (IRD) aus Bohrkern MD01-2040 am Iberischen Rand (40°N, hellorange). (i) Kombinierte relative Häufigkeit des Wachstums aller drei Bleßberg-Tropfsteinproben mit mehr als 30 % positiven Steigungen im AltersmodellAltersmodell Nach der Datierung eines Stalagmiten werden allen anderen Messungen (z. B. Isotopenverhältnisse), die ursprünglich entlang einer Längen-Achse durchgeführt wurden, ein Alter zugeordnet. (rot). Die Vor- und Nachlaufzeiten zwischen dem Beginn der DO-Ereignisse in Grönland und dem Beginn des Tropfsteinwachstums in der Bleßberg-Höhle sind angegeben. DO-Ereignisse (grau) und Heinrich-Ereignisse (blau) sind durch farbige Balken markiert.

Diese wissenschaftliche Untersuchung analysiert Tropfstein-Wachstumsphasen in der Bleßberg-Höhle anhand der Sinterproben BB-9, BB-10 und BB-15, um klimatische Veränderungen während der Marine-Isotopenstufe 3 (MIS 3), vor etwa 60.000 bis 30.000 Jahren, zu untersuchen. Die Tropfstein-Wachstumsphasen stimmen dabei mit warmen und feuchten Klimaphasen überein, die sogenannte Dansgaard-Oeschger-Ereignisse (DO-Ereignisse) markieren. Diese Ereignisse waren durch schnelle Erwärmungen während der letzten Eiszeit gekennzeichnet.

Insgesamt wurden neun Wachstumsphasen identifiziert, von denen acht mit DO-Ereignissen wie 16, 14–11 (60.14 – 48.55 ka BP) und 8–6 (38.12 – 32.82 ka BP) korrelieren. Diese Phasen traten während starker Meeresströmungen im Atlantik, warmen Meeresoberflächentemperaturen und reduzierter Meereisbedeckung auf. Besonders markant war die Wachstumsphase während DO14 (53.4 – 50.4 ka BP), dem längsten und wärmsten Ereignis von MIS 3. In dieser Zeit dominierte eine dichte Vegetation aus Picea- und Carpinus-Bäumen, was auf besonders günstige klimatische Bedingungen in Mitteleuropa hindeutet.

Eine wichtige Rolle spielen die Analyse der Kohlenstoffisotopenwerte (δ13C) und Sauerstoffisotopenwerte (δ18O) sowie von Calcium-IsotopenIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben. (δ44/42Ca). Die δ13C-Werte zeigen im Verlauf von MIS 3 einen Trend zu höheren Werten, was auf trockenere Bedingungen und eine weniger entwickelte Boden- und Vegetationsdecke hinweist. Calcium-Isotopen bestätigen ebenfalls den Trend zu einem trockeneren Klima, da Calcium bereits vor der Tropfsteinbildung ausfällt, was unter trockenen Bedingungen häufiger vorkommt. Die Untersuchung der Vegetation zeigt, dass sich diese von nicht-holzigen Pflanzen zu einer holzigen Vegetation entwickelte, besonders um 53.000 bis 51.000 Jahre vor heute. Später kehrte sie wieder zu nicht-holzigen Pflanzen zurück, was auf trockener werdende Bedingungen hindeutet. Die Sauerstoffisotopenδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an. zeigen ebenfalls einen Trend hin zu kälteren Bedingungen in den späteren Phasen von MIS 3.

Besonders während DO14 (ca. 53.500 bis 50.500 Jahre vor heute) gab es ein warmes, feuchtes Klima mit gut entwickelten Böden und dichter Vegetation. Dies ermöglichte ein kontinuierliches Tropfsteinwachstum. Am Ende dieser Phase traten zwei Kälteereignisse auf, die zu einem Rückgang der Vegetation und trockeneren, kälteren Bedingungen führten.

Insgesamt zeigen die Tropfstein-Daten aus der Bleßberg-Höhle wichtige Hinweise auf das Klima während MIS 3 und verdeutlichen, dass wechselnde Phasen von Feuchtigkeit und Trockenheit das Wachstum der Tropfsteine beeinflussten.

Stalagmiten-Wachstum während MIS 9 und MIS 11

Zhang, Junjie; Klose, Jennifer; Scholz, Denis; Marwan, Norbert; Breitenbach, Sebastian F. M.; Katzschmann, Lutz; Kraemer, Dennis; Tsukamoto, Sumiko

Isothermal thermoluminescence dating of speleothem growth – A case study from Bleßberg cave 2, Artikel

In: Quaternary Geochronology, Bd. 85, S. 101628, 2024.

Abstract | Links | BibTeX

Klose, Jennifer

Quantitative multi-proxy climate reconstruction for MIS 3 in Central Europe based on precisely dated speleothems from Bleßberg Cave, Germany Promotionsarbeit

2024.

Abstract | Links | BibTeX

Zhang, J.; Klose, J.; Sierralta, M.; Tsukamoto, S.; Scholz, D.; Marwan, N.; Breitenbach, S.

Isothermal thermoluminescence (ITL) dating of a speleothem from Bleßberg Cave Vortrag

29.06.2023, (17th International Luminescence and Electron Spin Resonance Dating conference (LED2023), Copenhagen (Denmark)).

Abstract | BibTeX

Kühne, Sofia

Spurenelementanalyse eines Speläothems der Marinen Isotopenstadien 9 und 11 aus der Blessberghöhle Bachelorarbeiten

Johannes-Gutenberg-Universität Mainz, 2023.

Abstract | Links | BibTeX

Geier, Florian

230Th/U – Datierung eines Speläothems der Marinen Isotopenstadien 9 und 11 aus der Bleßberghöhle in Thüringen Bachelorarbeiten

Johannes-Gutenberg-Universität Mainz, 2022.

Abstract | Links | BibTeX

Sierralta, Melanie; Katzschmann, Lutz; Nikonow, Wilhelm; Rammlmair, Dieter

Insights in Bleßberg cave: Speleothem chronology and geochemical research Proceedings Article

In: 75. Jahrestagung der Deutsche Geophysikalische Gesellschaft in Hannover, 2015.

Abstract | BibTeX

Am BB2-1 aus der Bleßberghöhle 2 wurden bereits 2014/15 am LIAG einige erste Untersuchungen durchgeführt, wie Altersbestimmungen, erste SpurenelementSpurenelement Ein Spurenelement ist ein chemisches Element genannt, das nur in geringer Konzentration in einer Probe vorhanden ist. Tropfsteine bestehen fast ausschließlich aus Kalziumkarbonat, also aus den Elementen Kalzium, Kohlenstoff und Sauerstoff. Andere Elemente kommen nur in sehr geringen Konzentrationen vor, sind aber vorhanden. Deren Konzentration hängt oft von den während der Entstehung des Tropfsteins herrschenden Umweltbedingungen ab.- und Sauerstoffisotopenδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an.-Analysen. Dadurch war das ungefähre Alter des Stalagmiten bekannt: 360 bis 301 ka BP.

2022 wurde im Rahmen einer Bachelorarbeit an der Uni Mainz der Stalagmit BB2-1 systematisch datiert und die neuen Alter ausgewertet. Dafür wurden 14 Datierungsproben entnommen und in der Arbeitsgruppe Isotopengeochemische Paläoklimatologie der Uni Mainz mittels U/Th-DatierungU/Th-Datierung Die U/Th-Datierung ist eine sehr präzise radiometrische Altersbestimmung auf Basis der Uran-Thorium-Zerfallsreihe. Das Uran zerfällt mit bekannten Halbwertszeiten (245.500 Jahre) zum Tochterelement Thorium. Stalagmiten bauen bei ihrem Wachstum (fast) nur das wasserlösliche Uran ein, während das schlecht bewegliche Thorium zum größten Teil im Boden und Epikarst über der Höhle verbleibt. Das kann man nutzen, um die Zeit zu berechnen, die seit der Ausfällung der untersuchten Karbonatprobe vergangen ist. Moderne massenspektrometrische Verfahren erlauben Altersbestimmungen mit der U/Th-Methode bis zu 700.000 Jahren vor Heute. auf einer moderneren Anlage als am LIAG datiert. Mögliche Verunreinigungen wurden berücksichtigt und die Alter entsprechend korrigiert. Die Alter sind daher deutlich genauer als die bereits bekannten.

Das älteste Alter wurde wie erwartet an der Basis des Stalagmiten gefunden. Es beträgt 425,46 ± 5,43 ka BP. Das jüngste Alter, an der Oberkante des Stalagmiten, beträgt 320,49 ± 9,58 ka BP. Die Alter dazwischen ändern sich nicht gleichmäßig. In den unteren 4/5 des Stalagmiten sind die Alter alle älter als 400 ka BP. Nur in dem oberen Fünftel sind die Alter deutlich jünger und liegen zwischen 341,31 und 320,49 ka BP.

Stalagmit BB2/1 mit Altern
Stalagmit BB2/1 mit Bohrstellen (rot) der einzelnen Proben mit den gemessenen und korrigierten Altern.

Damit lassen sich Wachstumsphasen des Stalagmiten definieren: Der untere, größere Teil ist im Isotopenstadium 11 gewachsen, der obere, jüngere Teil im Isotopenstadium 9. Bei beiden Stadien handelt es sich um Warmzeiten. In der Kaltzeit davor, dazwischen und danach ist der Stalgamit nicht gewachsen. Interessant ist, daß das Wachstum nur in den beginnenden Phasen der Warmzeiten stattfand, welche wärmer sind als die folgenden Phasen innerhalb des betreffenden Isotopenstadiums (Wachstum in MIS 11e bis 11c sowie in MIS 9e). Danach fand kein Stalagmitenwachstum mehr statt, auch nicht mehr in jüngeren Warmzeiten, was eine Änderung der hydrologischen Verhältnisse vermuten läßt.

Logo Univ Mainz

Johannes Gutenberg-Universität Mainz, Institut für Anorganische Chemie und Analytische Chemie – Arbeitsgruppe für Umwelt- und Atmosphärenchemie

Die Hauptarbeitsgebiete der Arbeitsgruppe liegen im Bereich der organischen und anorganischen Spurenanalytik unter Einsatz und Weiterentwicklung massenspektrometrischer Methoden, oft in Kombination mit chromatographischen Verfahren.

An der Forschung in der Bleßberghöhle beteiligt sich die Gruppe durch Rekonstruktion der Vegetation über der Höhle durch Analyse von Biopolymeren in Stalagmiten und durch Analyse von biochemischen Feuer-Markern in Boden-, Wasser- und Stalagmitproben.

Ansprechpartner

Prof. Dr. Thorsten Hoffmann

Webseite

https://www.ak-hoffmann.chemie.uni-mainz.de/wissenschaftlicher-werdegang/

Publikationen

Erste Rekonstruktion des Klimas des Holozäns

Breitenbach, Sebastian F. M.; Marwan, Norbert

Die Bleßberghöhle – ein Glücksfall für die Klimaforschung Buchabschnitt

In: Thüringer Höhlenverein, e. V. (Hrsg.): Nächster Halt: Bleßberghöhle, Suhl, 2022.

Abstract | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus-Peter; Marwan, Norbert

A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany Proceedings Article

In: Geophysical Research Abstracts, S. EGU2016-14213, 2016.

Abstract | Links | BibTeX

Die ersten Ergebnisse der geochemischen Analysen der drei Stalagmiten BB-1 bis BB-3 lassen bereits Aussagen über die klimatischen Veränderungen des Klimas der letzten 14.000 Jahre zu. Eine ausführliche Interpretation findet sich im Beitrag Klimazonenverschiebung in Mitteleuropa.

Erste Ergebnisse aus Analysen von BB-1 bis BB-3
Monitoring vorschau

Monitoring

Projektleitung

Beteiligte Partner

Inhalt

Für die quantitative Rekonstruktion vergangener Feuchtigkeitsregime werden detaillierte Messungen der Umweltbedingungen in der Höhle, im Boden und an der Oberfläche durchgeführt. Dieses Programm wird von der Northumbria Uni geleitet und bekommt Unterstützung von allen Seiten, besonders auch von den Höhlenforschern vor Ort. In der Höhle werden vor allem Wasserproben für die Analyse stabiler IsotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben. (δD und δ18O) gesammelt und eine Reihe von Parametern gemessen, wie z. B. Luft- und Wassertemperatur in der Höhle, Wasserdruck, pCO2 und Tropfraten. An der Oberfläche werden Lufttemperatur und Bodentemperaturen in verschiedenen Tiefen gemessen. Ausserdem wird in der Höhle Karbonat auf Uhrgläsern gesammelt, um Kalibrationsstudien zu unterstützen und die Wachstumsdynamik der Stalagmiten besser zu verstehen.

Massenspektrometer Northumbria University

Paläoklima im Holozän

Projektleitung

Beteiligte Partner

Inhalt

Die ersten drei Stalagmiten aus der Bleßberghöhle (BB-1, BB-2, BB-3) sind während der letzten etwa 10.000 Jahre, dem HolozänHolozän Der jüngste Abschnitt der geologischen Zeitgeschichte, etwa die letzten 11.700 Jahre., gewachsen. Anhand der Analyse stabiler IsotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben. und von Spurenelementen wird versucht, verschiedene Aspekte der damals herrschenden Umwelt- und Klimabedingungen zu rekonstruieren. Obwohl es bereits erste interessante publizierte Ergebnisse gibt, geht die Untersuchung dieser Proben weiter.

Ergebnisse

BB-8 (Vorschau)

Quantitative Rekonstruktion des Klimas in Mitteleuropa während des MIS 3

Logo DFG

DFG-Projekt: Quantitative Rekonstruktion des Klimas in Mitteleuropa während des MIS 3MIS 3 "MIS" ist die Abkürzung für "marine isotope stage", übersetzt also "Isotopenstadium mariner Sedimente". Da sich beim Wechsel von Warm- zu Kaltzeiten (und umgekehrt) die Isotopenverhältnisse in den Kalkschalen kleiner Einzeller (Foraminiferen) auf dem Meeresboden ändern, werden diese zur Datierung herangezogen und lassen sich zur Eingruppierung verschiedener Klimazustände in der Vergangenheit nutzen. "MIS 3" bedeutet dabei eine kurzzeitige Warmphase (beginnend vor 57 Tausend Jahren) während der letzten Eiszeit. basierend auf Multi-ProxyProxy Umwelt- und Klimainformationen aus der Vergangenheit sind nicht direkt verfügbar, weil niemand da war, der diese messen und aufzeichnen konnte. Daher ist  man darauf angewiesen, diese Informationen indirekt aus anderen Informationen abzuleiten, wie z. B. Baumringe, das Verhältnis von Sauerstoffisotopen, Spurenelementen, Mächtigkeit von Sedimentschichten usw. Diese Art von Daten nennt man Proxies, was aus dem englischen stammt und „Stellvertreter“ bedeutet. Daten präzise datierter Spaläotheme (Flowstones) aus der Bleßberg Höhle, Deutschland

Projektleitung

Beteiligte Partner

Inhalt

Verglichen mit unserer aktuellen Warmzeit, dem HolozänHolozän Der jüngste Abschnitt der geologischen Zeitgeschichte, etwa die letzten 11.700 Jahre., ist das letzte Glazial und besonders das Marine Isotopenstadium 3MIS 3 "MIS" ist die Abkürzung für "marine isotope stage", übersetzt also "Isotopenstadium mariner Sedimente". Da sich beim Wechsel von Warm- zu Kaltzeiten (und umgekehrt) die Isotopenverhältnisse in den Kalkschalen kleiner Einzeller (Foraminiferen) auf dem Meeresboden ändern, werden diese zur Datierung herangezogen und lassen sich zur Eingruppierung verschiedener Klimazustände in der Vergangenheit nutzen. "MIS 3" bedeutet dabei eine kurzzeitige Warmphase (beginnend vor 57 Tausend Jahren) während der letzten Eiszeit. (MIS 3, ca. 57 bis 27 kaka BP Mit "ka BP" sind "Tausend Jahre vor 1950" gemeint. Das "BP" steht für "before present", was in der Paläoklima-Wissenschaft als 1950 festgelegt wurde. "11.000 ka BP" bedeuted also 11 Tausend Jahre vor 1950, oder unter Verwendung unseres gewohnten Kalenders: 9050 v. Chr.) durch starke Klimaoszillationen geprägt. Dies wird beispielsweise durch Daten von Sauerstoffisotopenδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an.18O) Daten grönländischer Eisbohrkerne oder auch europäischen Klimaarchiven wie Pollen- oder Baumring-Datensätzen belegt. Leider gibt es jedoch wenige direkte ProxyProxy Umwelt- und Klimainformationen aus der Vergangenheit sind nicht direkt verfügbar, weil niemand da war, der diese messen und aufzeichnen konnte. Daher ist  man darauf angewiesen, diese Informationen indirekt aus anderen Informationen abzuleiten, wie z. B. Baumringe, das Verhältnis von Sauerstoffisotopen, Spurenelementen, Mächtigkeit von Sedimentschichten usw. Diese Art von Daten nennt man Proxies, was aus dem englischen stammt und „Stellvertreter“ bedeutet.-basierte Nachweise aus der Region Zentraleuropas, weshalb die Klima- und Umweltbedingungen während des MIS 3 noch immer größtenteils unbekannt sind. Zentraleuropäische SpeläothemeSpeläothem Sekundäre Mineralablagerungen in Höhlen, wie Sinter, Stalagmiten, Stalaktiten, usw. mit Wachstumsphasen während des MIS 3 sind durch vermutlich kalte Klimabedingungen limitiert und treten primär in wärmeren südlicheren, sowie alpinen Regionen, in denen das Wachstum durch Schmelzwässer ermöglicht wurde, auf.

Die DatierungDatierung Um einem Stalagmiten oder gar einer einzelnen Wachstumslage im Stalagmiten ein Alter zuordnen zu können, muß eine Datierung durchgeführt werden. Dies erfolgt in der Regel radiometrisch, d. h. über die Messung von Zerfallsprodukten (siehe auch U/Th-Datierung). mehrere Proben aus der Bleßberg-Höhle (Deutschland) mit Hilfe der 230Th/U-MethodeU/Th-Datierung Die U/Th-Datierung ist eine sehr präzise radiometrische Altersbestimmung auf Basis der Uran-Thorium-Zerfallsreihe. Das Uran zerfällt mit bekannten Halbwertszeiten (245.500 Jahre) zum Tochterelement Thorium. Stalagmiten bauen bei ihrem Wachstum (fast) nur das wasserlösliche Uran ein, während das schlecht bewegliche Thorium zum größten Teil im Boden und Epikarst über der Höhle verbleibt. Das kann man nutzen, um die Zeit zu berechnen, die seit der Ausfällung der untersuchten Karbonatprobe vergangen ist. Moderne massenspektrometrische Verfahren erlauben Altersbestimmungen mit der U/Th-Methode bis zu 700.000 Jahren vor Heute. präsentierte allerdings zwei Flowstones, welche während des MIS 3 und des Spätglazials gewachsen sind. Diese beiden Flowstones repräsentieren damit den nördlichsten (kontinentalen) Wachstum von Speläothemen in Mitteleuropa.

Das Hauptziel dieses Projekts ist die Erstellung eines präzise datierten Multi-Proxy Datensatzes für das MIS 3, sowie das Spätglazial, basierend auf den zwei Flowstones aus der Bleßberg Höhle. Dies gibt uns die einzigartige Möglichkeit in ausgewählten Phasen des letzten Glazials präzise datierte Informationen zur Variabilität des terrestrischen Klimas zu erhalten, die derzeit für Mitteleuropa basierend auf Speläothemen nicht verfügbar sind. Mit der Kombination verschiedener Proxys wie stabile IsotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben. oder SpurenelementeSpurenelement Ein Spurenelement ist ein chemisches Element genannt, das nur in geringer Konzentration in einer Probe vorhanden ist. Tropfsteine bestehen fast ausschließlich aus Kalziumkarbonat, also aus den Elementen Kalzium, Kohlenstoff und Sauerstoff. Andere Elemente kommen nur in sehr geringen Konzentrationen vor, sind aber vorhanden. Deren Konzentration hängt oft von den während der Entstehung des Tropfsteins herrschenden Umweltbedingungen ab., der Ergebnisse eines Höhlenmonitoring-Programms, der Analayse von δD und δ18O Daten von fluid inclusions und einer isotopeIsotop Chemische Elemente können aus verschieden aufgebauten Atomen gebildet sein. Die Anzahl Protonen im Atomkern ist zwar dabei gleich, aber die Anzahl der Neutronen kann variieren. Man spricht dann von Isotopen, deren Massen kleine, aber messbare Unterschiede aufweisen. Der Atomkern des Sauerstoffs besteht z. B. aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Die unterschiedlichen Isotope verhalten sich zwar chemisch identisch, physikalisch aber - aufgrund ihres unterschiedlichen Gewichtes - leicht unterschiedlich. Damit stellen sie äusserst wertvolle Marker dar, die uns wichtige Hinweise zur Änderung des Klimas, der Umgebungsvegetation, Bodenaktivität und vielem mehr geben.-enabled Klimamodellierung, bekommen wir die Möglichkeit detaillierte Einblicke in die Umweltbedingungen Zentraleuropas während des MIS 3 und des Spätglazials zu erhalten.

Logo Univ Mainz

Johannes Gutenberg-Universität Mainz, Institut für Geowissenschaften – Arbeitsgruppe Isotopengeochemische Paläoklimatologie/Speläothemforschung

Die Arbeitsgruppe Isotopengeochemische Paläoklimatologie/Speläothemforschung besteht seit September 2009 und wird von Prof. Dr. Denis Scholz geleitet. Hauptziel der Arbeitsgruppe ist die Rekonstruktion von Klimaschwankungen in der Vergangenheit. Als Klimaarchiv dienen sekundäre Mineralablagerungen in Höhlen, sogenannte SpeläothemeSpeläothem Sekundäre Mineralablagerungen in Höhlen, wie Sinter, Stalagmiten, Stalaktiten, usw..

An der Forschung in der Bleßberghöhle beteiligt sich die Gruppe durch DatierungDatierung Um einem Stalagmiten oder gar einer einzelnen Wachstumslage im Stalagmiten ein Alter zuordnen zu können, muß eine Datierung durchgeführt werden. Dies erfolgt in der Regel radiometrisch, d. h. über die Messung von Zerfallsprodukten (siehe auch U/Th-Datierung). und geochemischeGeochemie Untersuchung kleinster chemischer Unterschiede, meist anhand von Isotopenverhältnissen und Elementverteilungen, um Aussagen zu den Klima- und Umweltbedingungen während der erdgeschichtlichen Entstehung der Probe zu erhalten. Analysen von Stalagmiten.

Ansprechpartner

Prof. Dr. Denis Scholz

Webseite

https://www.geowiss.uni-mainz.de/isotopengeochemische-palaeoklimatologie-spelaeothemforschung/

Publikationen

Zhang, Junjie; Klose, Jennifer; Scholz, Denis; Marwan, Norbert; Breitenbach, Sebastian F. M.; Katzschmann, Lutz; Kraemer, Dennis; Tsukamoto, Sumiko

Isothermal thermoluminescence dating of speleothem growth – A case study from Bleßberg cave 2, Artikel

In: Quaternary Geochronology, Bd. 85, S. 101628, 2024.

Abstract | Links | BibTeX

Klose, Jennifer

Quantitative multi-proxy climate reconstruction for MIS 3 in Central Europe based on precisely dated speleothems from Bleßberg Cave, Germany Promotionsarbeit

2024.

Abstract | Links | BibTeX

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (Summer School on Speleothem Sciences 2023, Sao Paulo).

Abstract | Links | BibTeX

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing and progression of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (XXI INQUA Conference, Rome (Italy)).

Abstract | BibTeX

Kühne, Sofia

Spurenelementanalyse eines Speläothems der Marinen Isotopenstadien 9 und 11 aus der Blessberghöhle Bachelorarbeiten

Johannes-Gutenberg-Universität Mainz, 2023.

Abstract | Links | BibTeX

Klose, J.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.; Scholz, D.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2022, (KR9 Konferenz in Innsbruck).

Abstract | Links | BibTeX

Geier, Florian

230Th/U – Datierung eines Speläothems der Marinen Isotopenstadien 9 und 11 aus der Bleßberghöhle in Thüringen Bachelorarbeiten

Johannes-Gutenberg-Universität Mainz, 2022.

Abstract | Links | BibTeX

Bojack, Stephan

Rekonstruktion des MIS 3 anhand von Wachstumsphasen eines präzise datierten Speläothems aus der Bleßberghöhle Bachelorarbeiten

Johannes-Gutenberg-Universität Mainz, 2022.

Links | BibTeX

Klose, Jennifer; Scholz, Denis; Breitenbach, Sebastian F. M.; Plessen, Birgit; Vonhof, Hubert

Determination of phases of warm climate during MIS 3 in Central Europe based on precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2021, (GeoKarlsruhe 2021: Sustainable Earth – From processes to resources, Karlsruhe).

Abstract | BibTeX

Waltgenbach, Sarah

Evaluation of the potential of speleothems for reconstruction of (short-term) phases of extreme climate Promotionsarbeit

2019.

Abstract | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Waltgenbach, Sarah; Tjallingii, Rik; Leonhardt, Jens; Jochum, Klaus-Peter; Meyer, Hanno; Goswami, Bedartha; Marwan, Norbert; Scholz, Denis

Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany Artikel

In: Global and Planetary Change, Bd. 176, S. 144–161, 2019.

Abstract | Links | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Waltgenbach, Sarah; Tjallingii, Rik; Leonhardt, Jens; Jochum, Klaus-Peter; Meyer, Hanno; Marwan, Norbert; Scholz, Denis

Tracing past shifts of the boundary between maritime and continental climate over Central Europe Proceedings Article

In: Geophysical Research Abstracts, S. EGU2018-9046, 2018.

Abstract | Links | BibTeX

Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus-Peter; Marwan, Norbert

A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany Proceedings Article

In: Geophysical Research Abstracts, S. EGU2016-14213, 2016.

Abstract | Links | BibTeX

Wenz, Sarah; Scholz, Denis; Spötl, Christoph; Plessen, Birgit; Mischel, Simon; Breitenbach, Sebastian F. M.; Jochum, Klaus-Peter; Fohlmeister, Jens

Timing and duration of climate variability during the 8.2 ka event reconstructed from four speleothems from Germany Proceedings Article

In: Geophysical Research Abstracts, S. EGU2016-12731, 2016.

Abstract | Links | BibTeX

Marwan, Norbert; Breitenbach, Sebastian F. M.; Plessen, Birgit; Scholz, Denis; Leonhardt, Jens

Recurrence properties as signatures for abrupt climate change Proceedings Article

In: Geophysical Research Abstracts, S. EGU2014-8893, 2014.

Abstract | Links | BibTeX

Abrupte Änderungen im Klima

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (Summer School on Speleothem Sciences 2023, Sao Paulo).

Abstract | Links | BibTeX

Klose, J.; Scholz, D.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.

Timing and progression of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2023, (XXI INQUA Conference, Rome (Italy)).

Abstract | BibTeX

Klose, J.; Weber, M.; Vonhof, H.; Plessen, B.; Breitenbach, S.; Marwan, N.; Scholz, D.

Timing of Dansgaard-Oeschger events in Central Europe based on three precisely dated speleothems from Bleßberg Cave, Germany Konferenzberichte

Poster, 2022, (KR9 Konferenz in Innsbruck).

Abstract | Links | BibTeX

Marwan, Norbert

Bleßberghöhle – Schatzkammer für die Wissenschaft Vortrag

15.06.2022, (VdHK-Symposium: Wissenschaft unter Tage – Höhlenforschung im Dialog, Truckenthal (Germany)).

BibTeX

Breitenbach, Sebastian F. M.; Marwan, Norbert

Die Bleßberghöhle – ein Glücksfall für die Klimaforschung Buchabschnitt

In: Thüringer Höhlenverein, e. V. (Hrsg.): Nächster Halt: Bleßberghöhle, Suhl, 2022.

Abstract | BibTeX

Marwan, Norbert; Breitenbach, Sebastian F. M.; Plessen, Birgit; Scholz, Denis; Leonhardt, Jens

Recurrence properties as signatures for abrupt climate change Proceedings Article

In: Geophysical Research Abstracts, S. EGU2014-8893, 2014.

Abstract | Links | BibTeX

Am PIK werden u. a. neue Methoden entwickelt, die einerseits neue Aspekte in Paläoklimadaten untersuchen, die aber auch mit den Schwierigkeiten klarkommen, die für gewöhnlich mit Paläoklimaanalysen zusammenhängen – wie z. B. Lücken in den DatenLücken in den Daten Stalagmiten wachsen nicht gleichmäßig. Es kann sogar zu langen Ruhephasen kommen, in denen gar kein Wachstum stattfindet. Somit werden zu diesen Zeiten die entsprechenden Umweltinformationen nicht im Stalagmit abgespeichert. Es entstehen also "Lücken" in den Daten., Unsicherheiten der AlterUnsicherheiten der Alter Um die abgespeicherten Umweltinformationen aus den Stalagmiten bestimmten Zeiträumen zuordnen zu können, muß man diese datieren. Allerdings sind alle Datierungsverfahren mit Unsicherheiten behaftet. Das heißt, man kann den Zeitpunkt von bestimmten Umweltveränderungen, die man aus den Stalagmiten herauslesen kann, nie ganz genau bestimmen, sondern nur so ungefähr. Viele statistische Verfahren benötigen allerdings genaue Zeitpunkte und können daher mit solchen Daten nicht umgehen. oder Unregelmäßigkeiten der DatenpunkteUnregelmäßigkeiten der Datenpunkte Stalagmiten wachsen nicht gleichmäßig. Daher kann man die im Stalagmiten gemessenen Umweltveränderungen nicht gleichmäßig bestimmten Zeitpunkten (z. B. jährliche Zeitpunkte) zuordnen. Das erschwert in der Regel statistische Auswertungen, da die Auswertemethoden meist von gleichmäßig verteilten Zeitpunkten ausgehen.. Dabei handelt es sich zwar um Grundlagenforschung, aber diese wird auch sofort auf interessante Fragestellungen angewendet.

Ein Schwerpunkt ist die Entwicklung und Anwendung von Methoden, die speziell die wiederkehrenden Muster untersuchen (im englischen: „recurrence“). Diese Methoden sind sehr erfolgreich für das Auffinden von abrupten Änderungen, aber auch für das Vergleichen verschiedener Datensätze, um z. B. herauszufinden, ob es da gegenseitige Einflüsse gibt.

In einer unserer ersten Analysen von den drei Stalagmiten BB-1 bis BB-3, hatten wir uns die Sauerstoffisotopeδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an. von BB-1 mit diesen Wiederkehr-Methoden angeschaut. Dabei hatten wir extra auch die DatierungsunsicherheitUnsicherheiten der Alter Um die abgespeicherten Umweltinformationen aus den Stalagmiten bestimmten Zeiträumen zuordnen zu können, muß man diese datieren. Allerdings sind alle Datierungsverfahren mit Unsicherheiten behaftet. Das heißt, man kann den Zeitpunkt von bestimmten Umweltveränderungen, die man aus den Stalagmiten herauslesen kann, nie ganz genau bestimmen, sondern nur so ungefähr. Viele statistische Verfahren benötigen allerdings genaue Zeitpunkte und können daher mit solchen Daten nicht umgehen. mit berücksichtigt. Durch die Datierungsunsicherheiten gibt es kleine Verschiebungen der Zeitreihe entlang der x-Achse. Innerhalb der Unsicherheiten sind daher verschiedene Realisierungen des Verlaufs der gemessenen Sauerstoffisotope möglich.

Sauerstoffisotope von BB-1
Sauerstoffisotope von BB-1. Durch die Datierungsunsicherheiten gibt es verschiedene Möglichkeiten, zu welcher Zeit es Änderungen in diesem Klima-Archiv gab. Der Stalagmit ist in der Zeit von vor etwa 6.000 bis vor etwa 400 Jahren gewachsen.

Die Wiederkehrmuster werden mit einem speziellen Analysewerkzeug untersucht, dem sogenannten „recurrence plot“. Damit lassen sich Zeiten darstellen, zu denen ähnliche Zustände aufgetreten sind. Die Muster, die man in so einem „recurrence plot“ sieht, haben eine tiefere Bedeutung und können weiter analysiert und quantifiziert werden, um Änderungen in der DynamikDynamik Die zeitliche Veränderung von Zuständen, wie z. B. die zyklische Änderung des Klimas zwischen Warm und Kaltzeiten. des zugrundeliegenden Prozesses zu finden.

Recurrence plot der Sauerstoffisotope von BB-1
Recurrence plot einer Realisierung der gemessenen Sauerstoff-Isotopeδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an. in BB-1.

Die numerische Analyse von „recurrence plots“ liefert verschiedene Ergebnisse, die verschiedene Aspekte der Klimadynamik beleuchten. Zwei solcher Ergebnisse sind hier kurz dargestellt: einerseits die KomplexitätKomplexe Systeme Komplexe Systeme bestehen aus sehr vielen Komponenten, die auch miteinander wechselwirken, zeigen unvorhersagbares Verhalten und können trotzdem charakteristische Muster hervorrufen (weshalb sie sich deutlich von rein zufälligen Systemen unterscheiden). der Klimavariabilität („TransitivityTransitivity Ein Maß aus der Netzwerktheorie, welches quantifiziert, wie stark sich Zustände zu kleinen Gruppen zusammenfinden.“) und andererseits, wie gut so ein Klimasignal vorhersagbar wäre („DeterminismDeterminism Ein Maß aus der Wiederkehr-Analyse, welches beschreibt, wie gut sich die Veränderung eines Systems vorhersagen läßt.“). Beide Ergebnisse zeigen eine generelle Tendenz zu größerer Komplexität und geringerer Vorhersagbarkeit für jüngere Alter. Sie zeigen aber auch für bestimmte Zeitpunkte kurzzeitige Anstiege zu besserer Vorhersagbarkeit, nämlich ungefähr vor 4.200, 2.800 und 1.400 Jahren. Genau zu diesen Zeitpunkten kam es zu kurzzeitigen und schnellen Vereisungen im Nordatlantik, den sogenannten „Bond-EreignissenBond-Ereignis Kurze Zeiträume im Holozän, in denen kühleres Oberflächenwasser und Treibeis aus dem Arktischen Ozean bis tief in wärmere subpolare Gewässer getrieben wurde.“. Gleichzeitig gibt es Variationen in der Komplexität des Klimasignals („Transitivity“), allerdings bewegen sich diese Variationen innerhalb eines Unsicherheitsbereiches (KonfidenzintervallKonfidenzintervall Im Rahmen der Statistik ein Bereich, in dem man den gemessenen Veränderungen nicht wirklich vertrauen kann.), so daß wir diese nicht wirklich interpretieren dürfen.

Recurrence quantification der Sauerstoffisotope von BB-1
Quantitative Analyse von Wiederkehrmustern in den Sauerstoffisotopenδ18O Der Atomkern des Sauerstoffs besteht aus 8 Protonen und in der Regel aus 8 Neutronen. Es gibt aber auch Sauerstoff, dessen Kerne aus 8 Protonen und 9 oder 10 Neutronen bestehen (neben selteneren, instabilen Sauerstoffisotopen). Um das zu kennzeichnen, gibt man zusätzlich zum chemischen Symbol noch die Massenzahl (Summe aus Protonen und Neutronen) an, also 16O, 17O oder 18O. Das zahlenmäßige Verhältnis zwischen dem häufigsten Isotop 16O und dem schwereren, aber viel seltener auftretenden 18O wird durch vielfältige Mechanismen bestimmt. Verdunstet z. B. das Wasser in einem Wassertropfen, so geht zuerst das Wasser mit dem leichteren Sauerstoff, also 16O, in den gasförmigen Zustand über, da hierfür weniger Energie aufgewandt werden muss. Schwerere Sauerstoffisotope verbleiben in dem Wassertropfen dagegen viel länger. Das hat zur Folge, dass sich das Verhältnis zwischen 16O und 18O zugunsten von 18O verschiebt. Diese Abweichung kann gegen Standards verglichen werden; die Abweichung dieses Verhältnisses vom Standard wird als δ18O beschrieben. Da diese Abweichung des Isotopenverhältnisses vom Normalwert von verschiedenen Umweltparametern, wie Temperatur, Wind oder Luftfeuchtigkeit abhängt, bietet sie sich als Maß für Veränderungen im hydrologischen Kreislauf und damit als Klimaindikator an.-Messungen von BB-1.